

ED-308

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - IV

Theory and Application of Spectroscopy

Time : Three	e Hours]	[Maximum	Marks	:	80
--------------	----------	----------	-------	---	----

Note : Answer all questions. All parts of answer of each question should be written in one place. Be precise and to the point in your answer. The figures in the right-hand margin indicate marks.

Unit-I

 (a) Explain which of the following molecules exhibit (i) pure vibrational and (ii) pure rotational spectrum : 4 H₂O, HCl, BF₃, CO₂, CH₄, CCl₄, C₆H₆, N₂, O₂
 (b) Explain the following terms with reference to electromagnetic radiations : 8 (i) Scattering

DRG_223(4)

(Turn Over)

- (*ii*) Dispersion
- (iii) Absorption and Emission
- (iv) Polarization

<i>(c)</i>	Describe	unce	rtainty	princip	le	with	its	
	significanc	e in	spectro	oscopic	tec	ehniqu	ies.	8

(2)

OR

<i>(a)</i>	"Atomic	spectrum	is	line	spectrum	
	whereas	molecular s	pect	rum is	s obtained	
	as band."	Give prop	er e	explana	tion.	4
(<i>b</i>)	Explain t	he followin	g :			8

- (i) Natural line width
- (ii) Intensity of spectral lines
- (c) In which region of electromagnetic spectrum do the following frequencies exist ?
 - (*i*) 5 cm⁻¹
 - (*ii*) 1000 cm⁻¹
 - (*iii*) 12500 cm^{-1}
 - (*iv*) 60000 cm^{-1}

Explain the spectroscopic techniques associated with these spectrum.

Unit-II

2. (a) The rotational constant for H^1Cl^{35} is observed to be 10.5909 cm⁻¹. What are the values of B for H^1Cl^{37} and D^2Cl^{35} ? 4

DRG_223(4)

(Continued)

(<i>b</i>)	What is rotational constant? Compare the
	energy levels of a rigid diatomic rotor
	with its isotopically substituted molecule
	and discuss the discrepancy.

(c) How microwave spectroscopy is useful in the determination of bond length?
 Calculate the rotational constants of H₂ and HCl molecules. The bond lengths of H—H and H—Cl are 200 pm and 136 pm respectively.

OR

(<i>a</i>)	How pure rotational spectrum is obtained ? Explain line spacing obtained in this spectrum.	4
(<i>b</i>)	Classify molecules in terms of their moment of inertia and indicate which of the following molecules will show a microwave rotational spectrum : H_2 , CH_3Cl , CH_2Cl_2 , O_3 , SF_6 , C_2H_2 , NH_3 , CH_3CHO	8
(<i>c</i>)	Describe rotational spectra of linear polyatomic molecule. Unit-III	8

3. (a) Write the basic principle of Auger spectroscopy. (b) Write the principle and applications of electron diffraction microscopy. 8

DRG_223_(4)

(Turn Over)

8

8

(3)

(4)

(<i>c</i>)	Explain	variable	s on	which	inte	nsities	of	
	Auger e	electron	spect	rum pe	aks	depend	1.	8

OR

	(<i>a</i>)	Explain the process of phosphorescence describing it's applications.	4
	(<i>b</i>)	Describe theory, instrumentation and applications of fluorometry.	8
	(c)	Explain the terms 'optical density' and 'turbidity'. Describe the instrument that can be used for measurement of optical density.	8
		Unit-IV	
4.	(<i>a</i>)	Write down the Quantum theory of Raman effect.	4
	<i>(b)</i>	Describe Resonance Raman Spectroscopy	8
	(c)	Explain selection rules for pure-rotational, vibrational and vibrational-rotational Raman spectra.	8
		OR	
	(<i>a</i>)	Why it is often desirable to determine Raman spectra in the gas phase?	4
	<i>(b)</i>	Write a note on CARS.	8
	(c)	Write instrumentation, advantages and limitations of Raman spectroscopy.	8

DRG_223_(4)