
Unit-I

1. (a) Let f (z) be analytic within and on the
boundary C of a simply connected region
D and let a be any point within C. Then
show that
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(b) State and prove Liouville’s theorem.
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(c) Find the nature and location of the
singularities of the function
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. Prove that f (z) can be

expanded in the form
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      where

0 < | z | < 2 and find the values of a0 and
a2.

Unit-II

2. (a) If M is maximum value of | f (z) | on and
within C, then show that | f (z) | < M for
every point z within C, unless f is a
constant.

(b) State and prove Schwarz’s lemma.

(c) If a > e, use Rouche’s theorem to prove
that the equation ez = azn has n roots
inside the circle | z | = 1.

Unit-III

3. (a) Show that
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where a > b > 0.
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(b) Evaluate :
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(c) If a > 0, m > 0, prove that :
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Unit-IV

4. (a) Let f (z) be an analytic function of z in a
domain D of the z-plane and let f (z)  0
inside D. Then show that the mapping
w = f (z) is conformal at all points of D.

(b) Show that the transformation 
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z ic
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where c is real, maps the right half of the
circle | z | = c into the upper half of the
w-plane.

(c) Find all the mobius transformation which
transform the unit circle | z |  1 on to the
unit circular disc | w |  1.
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Unit-V

5. (a) Let the metric  be defined by

   
 1

,1,
2 1 ,

n
n

nn

f g
f g

f g





        if e > 0

is given then show that there is a  > 0
and a compact set K  G such that for
f, g C (G, ),
sup{d (f (z), g (z) : z K} <    (f , g) < e

conversely if  > 0 and a compact set K
are given then show that there is an e > 0
such that for f, g (, ),

 (f, g) < e sup {d ( f (z), g (z)) : z K} < .

(b) State and prove Open mapping theorem.

(c) Let  be a simply connected region in
the z-plane which is neither the z-plane
itself nor the extended z-plane and let
z0   then show that there is a unique
analytic function f :   having the
properties :

(i) f (z0) = 0 and f (z0) > 0;

(ii) f is one-one;

(iii) w = f (z) maps  onto the disc
| w | < 1.
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